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ABSTRACT 

 

 The paper explores the transformative impact of drone technology in agriculture, particularly in paddy 

farming. Drones, also known as Unmanned Aerial Vehicles (UAVs), offer significant advantages in precision farming 

by enabling efficient application of fertilizers, pesticides, and other chemicals. This study compares the cost, returns, 
and resource use efficiency between paddy farmers using drones and those not using them. A multi-stage stratified 

random sampling method was employed in Pondicherry district, covering 60 respondents. Analytical tools such as 

resource use efficiency analysis, decomposition analysis, and Partial Least Square-Structural Equation Modelling (PLS-

SEM) were used to evaluate the data. The findings suggest that farmers using drones experienced a 6.04 per cent 

reduction in per-acre cultivation costs and higher net income than non-users. The decomposition analysis revealed that 
technical changes contributed to 51.66 per cent of the variation in output, while changes in input use contributed 40.95 

per cent. The PLS-SEM analysis indicated a positive relationship between drone usage and improved cost-time 

management, highlighting the potential of drones to enhance productivity and sustainability in agriculture by reducing 

labor costs and minimizing environmental impact 
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I 

 
 INTRODUCTION 

 

 Precision farming is beneficial for accurately locating geographical positions 

using remote sensing. It lays a strong foundation for various modern farm activities, 

such as spraying fertilizers and pesticides, seed sowing, irrigation, harvesting, and crop 

monitoring. This shift from traditional to mechanized agriculture paves the way for 

intensive farming. Precision farming maximizes resource use at minimal cost and time, 

contributing to sustainable agriculture (Parameswari and Walia, 2019). Unmanned 

Aerial Vehicles (UAVs), popularly known as drones, are aircraft operated remotely by 

a human operator using an onboard computer. The term 'Drone' stands for Dynamic 

Remotely Operated Navigation Equipment. Recently, drone technology has gained 

popularity in agriculture, assisting in farm management studies, cost and time 

minimization, improved yields, and effective spraying techniques (CIMMYT, 1993). 

Drones uniquely benefit farmers, enhancing efficiency, improving yields, and reducing 

cultivation costs. The drone market is expected to rise to 32.40 billion US dollars, 

indicating that the agricultural sector will greatly benefit from drones compared to 

conventional methods (Pinguet, 2021). The international market for drone sprayers in 

the agriculture and allied sectors is expected to grow by 36 per cent, reaching a value 
of 5.70 billion US dollars by 2025 (TropoGo, 2022). However, this technology is still 
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in its early adoption stage, with many farmers hesitant to embrace it due to fears of 

crop failure, lack of knowledge, and insufficient training. 

 This study explores the potential of drone technology in the given study area, 

mainly focusing on costs, returns, resource use efficiency in paddy farms, the 

decomposition of output changes due to drone technology, and the relationship 

between drone utilization and cost-time management. 
II 

 

METHODOLOGY 

2.1 Sampling Procedure 
 

A multi-stage stratified random sampling technique was selected with 

Pondicherry district as the universe, blocks in the study area as the first stage unit, 

commune panchayats as the second stage sampling unit, villages in the selected 

commune panchayats as the third stage unit and the paddy farmers form the fourth unit 

of sampling. Five paddy farmers using drones and five non-users were chosen 

randomly from each selected village. Hence, the ultimate sample consisted of 30 drone 

users and 30 non-users, and the total sample was 60 respondents. 

2.2 Collection of Data 

The primary data were collected from the sample respondents of the two 

categories, viz., drone user and non-user, by personal interview method with the help 

of a comprehensive and pre-tested schedule during March-April 2024. The interview 

schedule for farmers consisted of specific and detailed information on the quantity of 

inputs used and the cost and returns obtained in cultivating paddy by drone users and 

non-users. 
III. 

TOOLS OF ANALYSIS 

3.1 Analytical Approach in the Estimation of Costs and Returns 

Cost concepts such as cost A1, A2, B1, B2, C1, C2, and C3 were used to calculate 

the profitability of production in farm households.  

3.2 Resource Use Efficiency 

The Cobb-Douglas production function specified for paddy farms in the present 

study area is given below: 

Y = aX1
β1 X2

β2 X3
β3 X4

β4 X5
β5 Xut 

Where,  

            YD = Yield of paddy/ acre 

X1 = Human labour (number of labours/ acre) 

X2 = Machine labour (number of hours/ acre) 

X3 = Irrigation (number of irrigations/ acre) 
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X4 = Manures and fertilizers (kg/ acre) 

X5 = Crop protection chemicals (litres/ acre) 

ut = Error term 

A = Intercept/ constant  

b1………b6 = Regression coefficients 

The Cobb-Douglas form of production function was transformed into a 

logarithmic linear form, and parameters (coefficients) were analyzed using the 

Ordinary Least Square method as given below. 

ln YD = ln a + β1 lnX1 + β 2 lnX2 + β 3 lnX3 + β 4 lnX4 + β 5 lnX5 + ut ln e 

3.3 Decomposition Analysis 

The factors influencing drone technology and their contribution have been 

estimated by decomposing the overall variation in paddy farmers’ income due to usage 

of drone equipment into the proportion due to technical change and the proportion due 

to the input change. The decomposition model proposed by Bisaliah (1977) was used 

in this study. 

Besides decomposing the total change, the value of inputs saved with drone 

technology and the value of surplus output obtained were also estimated. The empirical 

model is derived as follows. 

Log G1 = log Z1 + a1log HL1 + b1log ML1 + c1log I1 + d1 log F1 + e1 log P1 + u1 ….(1) 

Log G2 = log Z2 + a2log HL2+ b2log ML2 + c2 log I2 + d2 log F2 + e2 log P2 + u2 ….(2) 

 

Equations (1) and (2) are the Cobb-Douglas functions in log form for drone user 

and non-user categories in paddy cultivation, respectively. 

Where,  

G = Gross Income (Rs.) 

           HL = Expenditure on Human labour (Rs.) 

          ML = Expenditure on machine labour (Rs.) 

I = Expenditure on irrigation (Rs.) 

F = Expenditure on manures and fertilizers (Rs.) 

P = Expenditure on crop protection chemicals (Rs.) 

Z1 is the scale parameter, and a1, b1, c1, d1, and e1 denote output elasticities of the 

respective inputs, u1 is a random disturbance term, independently distributed with zero 

mean and finite variance.  

Taking differences between equations (2) and (1), adding similar terms, 

subtracting the similar parameters, and rearranging them, the equation could be written 

as: 
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Log 
𝐺2

𝐺1
 = log 

𝑍2

𝑍1
 + [(a2 – a1) log HL1 + (b2 - b1) log ML1 + (c2 - c1) log I1 + (d2 - d1) 

log F1 + (e2 - e1) log P1] + [a2 log 
𝐻2

𝐻1
 + b2 log 

𝑀𝐿2

𝑀𝐿1
 + c2 log 

𝐼2

𝐼1
 + d2 log 

𝐹2

𝐹1
 + e2 log 

𝑃2

𝑃1
 

+ (u2 - u1)                                                                                                       ...(3) 

The attribution of technical change to overall variation in income is derived from 

equation (3). In contrast, the first and second bracketed terms measure percentage 

changes in income due to shifts in scale and slope parameters, respectively. The third 

bracketed term denotes the assessment of change in income due to variations in the 

inputs used per acre, given the percentage change in output by these inputs under drone 

technology. These three terms will together account for the total change in income.  

3.3.1 Value of Inputs Saved Approach 

With this approach, the resources required by non-users to produce per-acre 

levels of income in drone technology were estimated. The difference between this 

figure and the resources used to produce the income level using drone technology 

represents the inputs saved because of higher efficiency due to drone technology. The 

following expression was formulated to evaluate the inputs saved in terms of value due 

to drone usage: 

ROT = (1 + 
𝑟

100
 ) RNT 

SR = ( 
𝑟

100
 ) RNT 

 
3.3.2 Value of Surplus Output Obtained Approach 
 

The value of surplus output obtained using drone equipment, the non-usage of 

drone technology, and the volume of inputs were estimated using the following 

formula. 

ΔY = YNT - YOT 

      (ΔY)(r) = value of surplus output due to technical change alone 

Where,  

YNT = Per acre output with use of drone technology 

YOT = Per acre output without drone technology 

RNT = Human labour value, machine labour value, irrigation charges, manures & 

fertilizers, and crop protection technology used in producing YNT 

ROT = Value of selected inputs required to produce YNT without the use of drone 

technology 

r = Percentage increase in output per acre under drone usage with the non-usage volume 

of all selected exogenous variables per acre 
  SR = Value per acre of selected explanatory variables saved to produce YNT with drone 

usage. 
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3.4 Partial Least Square – Structural Equation Model 
 

The PLS-SEM technique, a two-step modelling approach for data analysis 

introduced by Anderson and Gerbing (1988), was employed in this study. PLS-SEM 

consists of two distinct ways: the measurement approach and the structural approach. 

The measurement approach served as a preliminary analytical tool. It assesses 
the reliability and validity of the data, which are crucial steps before proceeding to 

empirical analysis. It is widely acknowledged that unreliable or invalid data would 

render any subsequent empirical analysis futile due to potential issues with computed 

results. Once the Measurement approach was validated, the Structural approach was 

utilized to test hypotheses regarding the relationships between modelled variables. The 

Structural approach employed the bootstrapping technique to examine these 

relationships. Path analysis, an integral component of the Structural approach, 

constructed and evaluated the significance of these paths. Specifically, the PLS-SEM 

method was employed for evaluating Structural Equation Modelling (SEM) using an 

appropriate statistical software, SmartPLS 4. 

IV 

 

RESULTS AND DISCUSSION 
 

The primary data collected from the sample respondents were analysed with the 

specific objectives outlined for the study. The results are presented below.  

4.1 Cost and Returns 

The cultivation cost was calculated for paddy crop separately for drone user 

and non-user categories by working out the share of each cost item in the total cost for 

cultivation and given in Table 1. 

It is evident from Table 1 that the overall cultivation cost of paddy in the non-

user category was Rs. 56,985.67 per acre, which is 6.04 per cent higher than the 

cultivation cost of the drone user category. Among the different cost components in 

paddy cultivation for the drone users, machine labour occupied the major share of 18.44 

per cent, followed by human labour (9.60 per cent), fertilizer (9.58 per cent), manure 

(6.38 per cent), crop protection chemicals (3.38 per cent), seed (1.88 per cent), and 

irrigation (1.53 per cent). Whereas, in the non-user category of farms, the machine 

labour constituted 15.72 per cent, which is followed by fertilizer (13.64 per cent), 

human labour (10.49 per cent), manure (8.55 per cent), crop protection chemicals (6.03 

per cent), seed (1.98 per cent) and irrigation (1.59 per cent). 

Thus, it could be understood that the cost of human labour, seed, manures and 

fertilizers, crop protection chemicals, and irrigation were lower in the drone user 

category than in the non-user category. However, the machine labour cost was higher 

in the drone user category. Findings showed that the gross income from paddy by the 

drone user farms was higher, i.e., Rs. 76,698, compared to the non-user farms (Rs. 
72,617). Consequently, the net income received by the drone user was much higher, 

accounting for Rs. 22,960, than the non-user category (Rs. 15,931). The net return per  
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TABLE 1. COST AND RETURNS OF SAMPLE PADDY FARMS  

 

S. No 

(1) 

Items 

(2)   

Drone User 

(3) 

Non-User 

(4) 

1 Human labour 
5,160.34 

(9.60) 

5,978.00 

(10.49) 

2 Machine labour 
9,912.00 
(18.44) 

8,956.66 
(15.72) 

3 Seeds 
1,013.80 

(1.88) 

1,133.33 

(1.98) 

4 Crop protection chemicals 
1,820.00 

(3.38) 

3,466.67 

(6.03) 

5 Manures 
3,433.33 

(6.38) 

4,873.33 

(8.55) 

6 Fertilizers  
5,146.83 

(9.58) 

7,775.33 

(13.64) 

7 Irrigation charges 
825.00 
(1.53) 

910.00 
(1.59) 

8 Depreciation (machinery and farm building) 
400.00 

(0.74) 

400.00 

(0.70) 

9 Land revenue, cess, and taxes 
140.33 

(0.26) 

157.33 

(0.28) 

10 Miscellaneous expenses (electricity, fuel, etc) 
470.00 

(0.87) 

141.33 

(0.25) 

11 Interest on working capital @ 7 per cent 
1,996.51 

(3.71) 

2,296.84 

(4.03) 

 Cost A1 
30,318.14 

(56.42) 
36,008.82 

(63.33) 

12 Rent paid for leased in land 
6,183.33 

(11.51) 

5,013.33 

(8.79) 

 Cost A2 
36,501.48 

(67.92) 

41,122.15 

(72.13) 

13 Rental value of owned capital assets (excluding land) 
1,448.25 

(2.69) 

693.00 

(1.22) 

 Cost B1 
37,949.73 

(70.62) 

41795.15 

(73.34) 

14  Rental value of owned land 
10,423.33 

(19.39) 

9,520.00 

(16.70) 

 Cost B2 
48,372.72 

(90.01) 

51,315.15 

(90.04) 

15  Imputed value of family labour 
480.00 
(0.89) 

490.00 
(0.86) 

 Cost C1 
38,429.73 

(71.51) 

42,285.15 

(74.20) 

 Cost C2 
48,852.72 

(90.91) 

51,805.15 

(90.91) 

 Cost C3(Cost C2 + 10 % of cost C2) 
53,737.99 

(100) 

56985.67 

(100) 

 Gross income 76,698.33 72,916.67 

 Net income 22,960.34 15,931.01 

 Returns per rupee 1.43 1.28 

  

rupee was higher in the drone user category (1.43) than in the non-user category (1.28). 

Thus, the respondents using drone technology had realised significantly higher yield 

and returns from paddy. The decrease in fertilizer and pesticide usage in quantity and 

cost might be due to the uniform spraying of fertilizer using drones. Nevertheless, the 
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lack of human labour supply was also an inevitable constraint in paddy cultivation. So, 

this new technology could be recommended for sustainable growth in agriculture. 

4.2 Resource Use Efficiency in Paddy Cultivation 
The Cobb-Douglas production function was fitted with yield as the outcome 

variable and inputs like human labour, machine labour, irrigation, manures & 

fertilizers, and crop protection chemicals as the predictor variables. The analysis was 

done separately for both categories. The results are presented in Table 2. 
 

TABLE 2. ESTIMATES OF THE COBB-DOUGLAS PRODUCTION FUNCTION 

S. No 
(1) 

Variables 
(2) 

Drone Users Non-Users 

Coefficients 

(3) 

Standard Error 

(4) 

Coefficients 

(5) 

Standard Error 

(6) 

1 Constant/Intercept      1.881 1.610   4.822*** 0.378 

2 
Human Labour 

(Man days/acre) 
     0.405*** 0.105        0.692*** 0.119 

3 
Machine Labour 

(hours/acre) 
     0.287*** 0.075        0.288*** 0.058 

4 Irriagtion (no/acre)      0.086 0.126 0.319** 0.076 

5 
Manures and Fertilizers 

(kg/acre) 
     0.429*** 0.149        0.039 0.029 

6 
Crop protection chemicals 

(Litres/acre) 
     0.226* 0.012       -0.199 0.079 

 R2 0.72  0.77  
 Returns to Scale 1.43  1.14  

A perusal of the estimated production function revealed that the value of R 

square in the regressions was 0.72 in the drone user category and 0.77 in the non-user 

category, which implied that 72 per cent and 77 per cent of the variation in paddy yield 

was explained by the included predictor variables used in the model, respectively. The 

human labour, machine labour, manures, and fertilizers were positive and statistically 

significant on the drone user farms. Moreover, the use of crop protection chemicals 

was positive and significant. The regression coefficients of these input variables reveal 

that for every one per cent increase in these variables, ceteris paribus would result in 

0.41, 0.29, 0.43, and 0.23 per cent increase in the paddy yield, respectively.  

For the non-adopters, the coefficient of human labour, machine labour, and 

irrigation was positive and statistically significant at a one per cent level. The 

regression coefficients of these variables indicate that everyone per cent increase in the 

variables would result in 0.69, 0.29, and 0.32 per cent increase in the paddy yield, 

respectively. It means the scope for expanding the use of these inputs to increase the 

paddy yield.  

The sum of production elasticities in the drone user category was 1.43, whereas 

in non-users, it was 1.14. This indicates that the increased return to scale prevailed in 

the sample farms in paddy production. More specifically, the returns to scale were 

higher in the drone user category than in the non-user category. In summary, 

incorporating drone technology in paddy cultivation has showcased improved resource 

use efficiency compared to non-users. Drones can enable precise input optimization 

and efficient operational management. Farmers can minimize resource wastage by 

leveraging these advancements, improving productivity, and promoting sustainable 
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agricultural practices. Drone technology has the potential to revolutionize agriculture, 

making it more resource-efficient and environmentally friendly. 
 

4.3 Decomposition Analysis 

In decomposition analysis, using the values of production parameters and the 

input levels, the total change in per acre paddy output with the adoption of innovative 

practices, namely, drone usage, has been decomposed, and the findings are given in 

Table 3. 
 

TABLE 3. ESTIMATES OF DECOMPOSITION ANALYSIS 

S. No Source of change Percentage Attribution 

1. Technical change 51.66 

2. Change in inputs 40.95 

a) Human Labour 4.46 

b) Machine Labour 14.94 

c) Irrigation 0.17 

d) Manures and Fertilizer 13.46 

e) Crop protection chemicals 7.92 

3. Changes due to other factors 7.39 

 Total due to all sources 100.00 

It could be inferred from Table 3 that the attribution of technical change to the 

overall variation in output was found to be 51.66 per cent, since technical change 

influences the sources of output growth by altering the scale and slope parameters. It 

is understood that with the same level of per-acre inputs, 51.66 per cent more output 

could be obtained in the production process. The input changes under drone user farms 

contributed 40.95 per cent of the increased output. The contribution of machine labour 

was the highest, with 14.94 per cent, followed by manures and fertilizer (13.46), crop 

protection chemicals (7.92 per cent), human labour (4.46 per cent), and irrigation, with 

only a negligible share. 

4.3.1 Value of Input Saved Due to Drone Usage 

With the value of the inputs saved approach, the resources required to produce the 

drone usage level of output per acre by non-user were estimated, and the results are 

presented in Table 4. 
TABLE 4. VALUE OF INPUT SAVED DUE TO DRONE USAGE 

S. No 

(1) 

Variable 

(2) 

Value 

(3) 

1 RNT 26,297.50 
2 ROT 39,972.20 

3 r (%) 0.52 

 Value of input saved per acre in paddy cultivation (SR) 13,674.70 

 

It could be inferred from Table 4 that in the absence of drone technology, a 

farmer would have required an additional amount of Rs. 13,674.70 per acre to produce 

the drone-user income level. This magnitude of resource-saving was due to an upward 
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shift in the production function or a downward shift in the unit cost function with drone 

technology. The outcomes support the findings obtained by Bisaliah (1977). 

4.3.2 Value of Surplus Output obtained under Drone Usage 

The additional quantity of output obtained with drone usage was estimated and 

given in Table 5. 
                     

TABLE 5. ESTIMATES OF SURPLUS OUTPUT OBTAINED UNDER DRONE USAGE 

S. No 
(1) 

Variable 
(2) 

Value 
(3) 

1 YNT 23.68 Quintals 

2 YOT 22.30 Quintals 

3 ΔY 1.38 Quintals 

4 r (%) 0.52 
 ΔY (r) 0.72 Quintals 

The surplus output obtained in paddy cultivation using drones, without 

additional resource costs, was 1.38 quintals per acre (Table 5). Further, the per acre 

income of the drone user category was higher than the non-user category. The 

percentage increase in income per acre in the drone user category with the non-user 

category volume of all selected exogenous variables per acre was 0.52.  

4.4 Time and Cost Management in Drone Usage 

The PLS-SEM technique was used to evidence the observed relation between 

drone utilization and cost-time management.  
 

4.4.1 Measurement Approach 
The measurement approach in this study is used to evaluate the data validity 

and reliability, as depicted in Figure 1. The empirical results of the Measurement 

approach are mentioned in the following sections.  

 

 

Figure 1. Illustration of Measurement Approach 
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4.4.1.1 Convergent Validity 

Typically, convergent validity is assessed using factor loading values. A 

commonly accepted guideline suggests that factor loading values should exceed 0.4 to 

meet the criteria for convergent validity. The estimated values of convergent validity 

are given in Table 6. 
 

TABLE 6. ESTIMATES OF CONVERGENT VALIDITY 

S. No 

(1)     

Items 

(2) 

CTM 

(3) 

DU 

(4) 

1 CTM1 0.816  

2 CTM2 0.718  

3 CTM3 0.816  

4 CTM4 0.699  

5 CTM5 0.828  

6 CTM6 0.865  

7 DU1  0.851 

8 DU2  0.747 
9 DU3  0.839 

10 DU4  0.759 

11 DU5  0.861 

Note: DU – Drone Utilization, CTM – Cost and Time Management 

It is seen from Table 6 that the loading values of the mentioned items range 

between 0.699 and 0.865, confirming the existence of convergent validity in the data. 

4.4.1.2 Discriminant Validity 
 

Testing for discriminant validity is essential for achieving accurate results. 

According to Forner-Larcker's criteria, the diagonal values should exceed those in the 

other positions. The findings of discriminant validity are depicted in Table 7. 
 

TABLE 7. FORNER-LARKER CRITERIA FOR DISCRIMINANT VALIDITY 

S. 

No 

(1) 

Constructs 
(2) 

Cost and Time Management (CTM) 
(3) 

Drone Utilization (DU) 
(4) 

1 Cost and Time Management (CTM) 0.932  

2 Drone Utilization (DU) 0.793 0.813 
           

It can be seen from Table 7 that this criterion was fulfilled. Hence, it denotes the 

existence of discriminant validity between drone usage and the cost-time management 

relationship in the data.   
 

4.4.1.3 Construct Reliability and Validity 
 

Cronbach’s Alpha (CBa) assessed the data's internal consistency and reliability. 

As per the criterion, CBa values should surpass 0.5 to meet the requirement for data 

reliability. Moreover, the closer the values are to one, the higher the reliability of the 

data. Table 8 presents the results of CBa, demonstrating that the values for both 

constructs exceeded 0.5, indicating robust data reliability. Construct reliability (CR) 

has been used to double-check the reliability measures. The results of CR also showed 

that the variables were highly reliable for the analysis. The Average Variance Extracted 

(AVE) coefficient was employed to assess the convergent validity of each variable. 
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AVE values greater than 0.50 indicate the existence of convergent validity between the 

variables in the data. 
 

TABLE 8. ESTIMATES OF CONSTRUCT RELIABILITY AND VALIDITY 

S. 
No 

(1) 

Item 
 

(2) 

Crohn-Bach Alpha (CBa) 
 

(3) 

Construct Reliability (CR) 
 

(4) 

Average Variance 
Extracted (AVE) 

(5) 

1 CTM 0.880 0.910 0.628 

2 DU 0.871 0.907 0.661 

 Note: DU – Drone Utilization, CTM – Cost and Time Management. 
 

4.4.2 Structural Approach 

The structural approach is depicted in Figure 2. Using the bootstrapping 

process, the relationships among the variables mentioned in the model were examined. 

 
 Note: DU – Drone Utilization, CTM – Cost and Time Management 

Figure 2. Illustration of Structural Approach 

4.4.2.1 Collinearity Issue 

The initial step in the structural model involved diagnosing collinearity issues. 

The Variance Inflation Factor (VIF) assessed collinearity among each construct 

variable. The results of VIF are presented in Table 9. 

                               TABLE 9. ESTIMATES OF COLLINEARITY DIAGNOSTIC 

S. No 
(1) 

Items 
(2) 

VIF 
(3) 

1 CTM1 2.710 

2 CTM2 2.639 

3 CTM3 3.234 
4 CTM4 1.730 

5 CTM5 2.704 

6 CTM6 3.732 

7 DU1 2.923 

8 DU2 2.027 
9 DU3 2.553 

10 DU4 1.940 

11 DU5 2.488 

Note: DU – Drone Utilization, CTM – Cost and Time Management 
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It inferred that the problem of collinearity among each variable was not present 

in the data since the value of VIF did not exceed 5 in the CTM and DU variables. 

4.4.2.2 Path Analysis 

The last step of the structural approach was path analysis, which was conducted 

to derive the study's empirical findings. The coefficients of path analysis were used to 

examine the proposed hypotheses of the study. The coefficients of structural path 

analysis presented a p-value of less than 0.05. The results verified the presence of an 

actual relation between drone utilization and cost-time management, thus accepting the 

proposed hypothesis. Drone usage positively and significantly influenced cost and time 

management (β = 0.932, T =2.071, p < 0.041**). The results of path analysis are 

presented in Table 10.  

 
TABLE 10. ESTIMATES OF PATH ANALYSIS 

Path 

(1) 

Coefficient 

(2) 

Std Dev 

(3) 

T stat 

(4) 

p values 

(5) 

DU -> CTM 0.932 0.450 2.071 0.041** 
R-square 0.868    

R-square adjusted 0.864    

** Significant at 5 per cent level. 

 

From Table 10, it could be inferred that the coefficient of CTM (0.932) was 

statistically significant at five per cent. The positive sign of the coefficient indicates a 

positive relation exists between DU and CTM. These results suggest that a one-unit 

increase in drone utilization is associated with a 0.932-unit increase in cost-time 

management. Furthermore, the R-square value (0.868) indicates that 86.80 per cent of 

the variation in cost and time management can be explained by drone usage. 

To sum up, employing the PLS-SEM technique, this study examined the efficacy 

of drone usage on cost-time management in agriculture. Through meticulous 

evaluation of the measurement and structural approach, the proposed theoretical 

framework was substantiated with robust evidence of construct reliability, convergent 

validity, and discriminating validity. The path analysis further affirmed the significance 

of hypothesized relationships, providing empirical support for the positive effects of 
drone utilization on cost-time management. These, in turn, exerted substantial positive 

influences on drone utilization and cost-time management. These comprehensive 

analyses validate the proposed theoretical model, contributing valuable insights into 

enhancing drone usage in the study area. 

 
V 
 

CONCLUSION 

In conclusion, drones have brought about a paradigm shift in agriculture, 

empowering farmers with precise and timely data collection, analysis, and intervention. 

The adoption of drone technology in agriculture has the potential to increase 
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productivity, reduce costs and time, and ultimately contribute to minimize 

environmental impact. As drone technology advances, its impact on agriculture will 

continue to evolve, presenting new opportunities for innovation and improvement in 

the farming industry. Effectively harnessing the impact of drone technology in 

agriculture requires careful consideration of policy implications. Such policies would 

maximize the potential benefits of drone technology and ensure the sustainable and 

socially responsible implementation of this transformative tool. 
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